Finite p-groups all of whose maximal subgroups, except one, have its derived subgroup of order ≤ p

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FINITE p-GROUPS ALL OF WHOSE MAXIMAL SUBGROUPS, EXCEPT ONE, HAVE ITS DERIVED SUBGROUP OF ORDER ≤ p

Let G be a finite p-group which has exactly one maximal subgroup H such that |H| > p. Then we have d(G) = 2, p = 2, H is a four-group, G is abelian of order 8 and type (4, 2), G is of class 3 and the structure of G is completely determined. This solves the problem Nr. 1800 stated by Y. Berkovich in [3]. We consider here only finite p-groups and our notation is standard (see [1]). If G is a p-gr...

متن کامل

Finite Groups Whose «-maximal Subgroups Are Subnormal

Introduction. Dedekind has determined all groups whose subgroups are all normal (see, e.g., [5, Theorem 12.5.4]). Partially generalizing this, Wielandt showed that a finite group is nilpotent, if and only if all its subgroups are subnormal, and also if and only if all maximal subgroups are normal [5, Corollary 10.3.1, 10.3.4]. Huppert [7, Sätze 23, 24] has shown that if all 2nd-maximal subgroup...

متن کامل

Finite p - Groups which Have a Maximal Subgroup is Full - Normal ( p > 2 )

Let G be a finite p-group, M is a subgroup of G. M is called fullnormal if for any subgroup K of M, we have K G. In this paper, We determine the structure of finite p-groups which have a maximal subgroup is full-normal(p > 2). Mathematics Subject Classification: 20D10, 20D15

متن کامل

Classification of finite simple groups whose Sylow 3-subgroups are of order 9

In this paper, without using the classification of finite simple groups, we determine the structure of  finite simple groups whose Sylow 3-subgroups are of the order 9. More precisely, we classify finite simple groups whose Sylow 3-subgroups are elementary abelian of order 9.

متن کامل

Finite $p$-groups and centralizers of non-cyclic abelian subgroups

A $p$-group $G$ is called a $mathcal{CAC}$-$p$-group if $C_G(H)/H$ is ‎cyclic for every non-cyclic abelian subgroup $H$ in $G$ with $Hnleq‎ ‎Z(G)$‎. ‎In this paper‎, ‎we give a complete classification of‎ ‎finite $mathcal{CAC}$-$p$-groups‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Glasnik matematicki

سال: 2012

ISSN: 0017-095X

DOI: 10.3336/gm.47.2.08